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ON A PLASTIC SHEAR WAVE 

A.M. SKOBEEV 
@loscow) 

(Received Dcc~mbcr 21, 1967) 

A setf-sfmil~r solution of the problem of propagation of a perturbation produced by a 
glancing collision against the boundary af B heff-space whoss matedal conforms to the 
Prandtl-Reuss equations is constructed. 

Simple conditions of solvability of the problem for two types of boundary conditions 
are constructed. These botmdary conditions correspond to the cases of 1) totd adhesion and 
2) Coulomb dry friction. 

1, ThePrandtl-Rensseqnatious nre sometimes used to describe the motion of e soil 
under large loads [I]. Problems of this type usuaBy contain two space variables and time, 
and can only be solved numerically. In some such problems it is necessary to consider the 
interaction of waves with u hard surface. The boundary conditions which this requires have 
not been investigated enffieientfy. 

It is natural to attempt to gain insight into the situation by way of some simple pro- 
blem. We shell consider sn elementary case which nevertheless retains some of the salient 
features of complex problems of wave end surface interaction. 

Let a hard slab be pressed by the force ue against the boundary of a half-space. At 
t = 0 the slab is set in motion with the constant velocity ue directed along the boundary. 

For t <O the half-spuce is e rest, and the stress it experfences is constant. 
Since the basic equations allow for the appearance of tsngent stresses in the medium, 

we can stipulate at the boundary either an adhesion condition or the dry friction law 
natural in solid body contuct. 

In Section 2 we shall show that under the adhesion condition the problem has a solu- 
tion only for velocities restricted by the &quality ve,< Y* ; a unique solution does not exist 
for vg > v,. It will be shown that a solution exists only if the coefficient satisfias some 
(quite sfmple) inequality. 

The notation is es foifows: 1: ie a coordinate fthe x-axis is directed into the helf- 
space); u is the v&city along x; u is the velocity along the normal to z; K is the bulk 
modahra; C is the deer modalor; 8 is the volume compression; Q is the stress along x; 
r is the tangent stress; p is the hydrostatic pressure; f is the coefficient of friction. 
The plasticity comiition la 
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“I, ((I + p)’ + T” = F, 2’ = ‘I, j6kp @*iI 
We assume that the density is cqnal to unity, and that 

K = K, ior 8’> 0 K = KS for @< 0 ((I&, Ka = con&) 

K > G, kxr, > ‘fsG > k& (G, k = con&) U.2) 

We also introduce the ancillary variables 

s=$-y’i-T~/Ts, s=t/t 

The next step is to solve the system consisting of the equations of motion, the conti- 
nuity equation, aud the Prandtl-Riesz equations, 

8% a0 av a? ap au 

at”az~ al’“az* 
--__K- 
at - ax 

under the initial and boundary conditions 

x= 0, u = 0, v = 0, (I = cru = - kp, for t = 0 

u = 0, V = ug for t > 0 for x=0 for (u. 3) 

u = 0, r = f I f3 I sgn [uo - ?J (4 +w for L > 0, 2 =: 0 

We now assume that v. > 0 (the cane vu < 0 results when we change sign). 
From [2] we infer that the assumptions just formulated admit of the following solutions 

of the basic system which depend onlv on s ; If a constant solatfon; 2) a strong discontinuity -- 
which propagates at the velocity v(1 + k)K, 3) a simple centared wave. The following 
relations are fulfilled in the domain occupied by the wave: 

a=$~- fypo2-GKs(s+ k) (1.3) 

P = PIT (4, Q = - (1 -i_ ks) p, T=‘/~ v’r”J 1/l -ss”kp (1.4) 

(4.5) 

Here f?~ is the intensity of the strong discontinuity. Formulas (1,3)-(M) define para- 
metrically the dependence8 of U, p, I, u. and v on a. 

Straight line 1 in the plane rt (see Fig. 1) represents the 
strong discontinuity. Straight lines 2 and 3 represent the forward 
and rear fronts of the simple wave. Straight line 2 is described 
by Eq. x =J’-Gt, s I 1; straight lines 3 is described by z = 4 (s&, 

where s, is an arbitrary constant satisfying the inequality 
0 < s.? < 1. The solution is constant in the domains D1, D,, 
D,. Quantities aseociated with the domain Di will be denoted by 
the subscript i. 

The boundary conditions are satisfied by means of the two 
arbitrary constant Ap and sI. 

Fig. 1 2. Let us first consider the adhesion condition, i.e. the case 
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where a2 = 0, v, = ve. To begin with, we note that v1 = 0, and that sI f 1 if vu > 0. From 
(1.4) and (1.5) we conclude that aI > a1 and aI < 0, &I < 0, i.e. that the strong discontinuity 
is introduced in order to compensate the change in u at the simple wave. Making use of the 
boundary conditions, the relations at the discontinuity, and expressions (1.4) and (1.5), we 
obtain two equations for p1 and al, 

where 

p* (1 /m h (s,)) - plJ = 0 

p,$ (7,) - vg = 0 

(2.1) 
(2.2) 

sz __ 

II (.‘.‘) z 

k 1/(1 :m k) K q (s) a (s) ds 
\ 

i 
n” (.Y) - (1 i- h-s) K 

(2.3) 

(2.4) 

Equations (1.3) and (1.2) imply that o1 <G and a = 0 (v/s7 as s + 0, k # 0. Simple 
analysfs shows that the functions h (sJ and $ ( s1 are positive and boanded, and that ) 
h’ (sx) < 0 II“ (.+) < 0 and d$ (1 + A)-’ /’ ds, < 0. 

From (2.2) and (2.1) we find that 

9 ($.) 11 + A ($)I-’ = vg 

Since the left side of (2.5) is a monotonous and bounded function of sI, we can de 
termine sI from (2.5) if 

1’0 < v, ?z 11) (0) / [1 f- A (011 

Assuming that the coefficient of static friction f. is given by the formula fe = max 
we find from (1.4) fa = kJfv2. 

Thus, stipulation of adhesion conditions at the boundary enables us to solve the pro- 
blem only if vel v*. 

3. Now let the conditions at x = 0 be those of dry friction, i.e. uI = 0. r, = f Ia,/ sgn 
(vu - v,). It follows from (1.5) that sgn f, = sgn vl. Since v0 > 0, the boundary conditions 
imply that% > 0, (‘2 < ~0. 

The condition a, = 0 once again yields Eq. (2.1). The condition for I together with (1.4) 
yields the second equation 

‘/?k J’-j v/1 + sz”= f (1 _I- k.yz) (3.1) 

It is easy to determine sp and pt from (3.1) and (2.1), and then to construct the solu- 
tion of the problem in explicit form. 

Since 0 < s, < 1, it follows that (3.1) is solvable only if / 5 kv3/2 = k. In other words, 
the problem is solvable only if the coefficient of sliding friction is smaller than or equal 
to the coefficient of static friction. 

We must also verify the dondition vr < va. This condition can be rewritten as 

vg > ‘II, (SJ / 11 + A ($)I = l’_ (3.2) 

where s) is given by (3.1) and where I/I and h are defined by Formulas (2.4) and (2.3). 
The conditions of solvability therefore become 

vo > “-9 f < fo 

Since (3.2) implies that v < ti+, it follows that the problem can be solved for any 
v > 0, provided that the adhesion condition is used for ve < v_ and the dry friction condition 
with f< fu is used for vu > v_. This clearly does not exhaust the problem of boundary con- 
ditions in the general case, since v_ is not known in advance. 
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Paper [ 11 describes a method for investigating the stability of steadystate motions of me- 
chanical system. This method enables one to obtain the sufficient, and in some cases the 
necessary, stability conditions. 

The present paper concern certain aspects and further possibilities of the above 
method, including its applicability to nonholonomic systems. Its relationship to the Chetaev 
method for constructing Liapunov functions is considered. The discneeion is illustrated 
with examples. 

Let us consider some mechanical system whose phase variables characterizing its 
position and velocities at any instant t (or some of these variables) are n, (r e: 1, . . . . a). 
We assume thatthe variables ~a are independent if the system is holonomic, or that they 
may be related by borne nonintegrable constraining equations if the system is nonholonomic. 
As these variables we can take, for example, the Lagrange variablee of the system q,-, qi; 
other possibilities are to take certain nonholonomic coordinates or quasi-coordinates. 

Let us assume that some number of independent first integrals 

Fj, (x1, . ..) su) = ci (i = 1 , ***7 m, m < 4 (1) 
not explicitly dependent on time are known for the differential equations of motion of the 
system written in one way or another; c are arbitrary integration constants. 

Let us recall the theorem of Routhf2] with Liapunov’s important addendum [3]. 

The o t e m. If some number of integrals not explicitly dependent on time has been 
obtained for the differential equations of motion of some system, and if among these inte- 
grals there is one which has a minimum or a maximum for all the given values of the re- 
maining integrals as well as for all of their values which are sufficiently close to the given 
ones, and, finally, if the values of the variables in the integral which deliver its extremum 
are continuous functions of the values of these integrals, then the motion of the system 
for certain values of the variables which minimize or maximize the integral in question for 
the given values of the other integrals is stable with respect to these variables br all 
sufficiently small perturbations. 

Liapunov did not prove this theorem, apparently regarding it as self-evident. It is 
possible, in fact, to adduce a very simple proof [4], whose idea can be stated briefly as 
follows. 

Let Fl (51, . . . . zn) = c;. be the integral referred to in the theorem. 
Since, by hypothesis, this integral has a minimum or maximum both for given values of 

the constants c. = 
I ci” and for all sufficiently close valuescj = cj” + Acj (i = 2, . . . . m).of 


